

‘

09

INTERNATIONAL SCIENTIFIC CONFERENCE
20 – 21 November 2009, GABROVO

MODUL FOR RUN-TIME MONITORING IN PC HARDWARE BASED REAL-TIME

SYSTEM

Bojan Jovanovic
Faculty of Electronic Engineering ,University of Nis, Serbia

Milun Jevtic
Faculty of Electronic Engineering ,University of Nis, Serbia

Abstract

This paper presents one way of implementation of hybrid on-line monitoring in real-time systems. Monitoring module is
described in VHDL programming language and tested on Altera DE2 development board.

Keywords: on-line hybrid monitoring, real-time systems, VHDL, FPGA.

INTRODUCTION
 For proper functionality of real-time systems (RTS) it
is necessary not only to give the correct results on the
outputs, but to give it in exactly defined time interval.
This is especially true for hard real-time systems
(HRTS), because untimely execution of the tasks can
lead to disaster. Tracking the course of events in RTS
we can make conclusions about meeting the timing
requirements. Therefore, can be said with good reason
that on-line monitoring of processes and events in
HRTS is of enormous importance because it provides its
predictable behavior.

EXPOSITION
Monitoring system is the process or set of possible
distributed processes whose function is dynamic
acquisition, interpretation and partitipation in
information concerning application, during the
application execution [1], [2]. Therefore can be said that
monitoring systems improve vitality , security, fault
tolerance and adaptability of RTS. Since the testing of
the timing requirements of RTS directly depends on
process, tasks and events monitoring, it is necessary to
say a few words about testing strategies. There are three
basic strategies for testing and correct functioning
validation for RTS.

Sequential environment shown in Figure 1 is least
complex for implementation. Testing scenario is created
in off-line mode and test excitation is generated before
execution of the test procedure. Data are stored and
reproduced during the RTS operation. During the test,
system response (the result of the test) is stored in real
time and later analyzed in off-line mode to make a
conclusion about functioning of RTS. The disadvantage
of this approach is inability of the dynamic changes in
the test scenario as well as inability of tracking the
course of the test events. Also, the success or the failure
of the test is known only after the analysis.

Fig. 1. Sequential organization of the testing process

More complicated testing systems generate data for

test scenario in real-time, during the system operation
(Figure 2). Only the test results are analyzed in off-line
mode.

Fig. 2. Testing with generating the test excitation in real-time

Only configuration shown in Figure 3 provides
complete testing in real-time and therefore on-line RTS
testing.

Fig. 3. Testing scenario when all processes run in real-time

RTS process monitoring

Monitoring system is obtrusive if it requires the use of
application resources (CPU time, I/O devices,
communication channels etc). Monitoring systems are
mainly obtrusive in some level. Completely unobtrusive
monitoring system use specialized hardware designed
for monitoring. Ideal monitoring system which is
completely transparent to the target system is very
difficult to achieve in practice.

There are three basic aproaches in implementation of
system monitoring:

 software,

 hardware and

 hybrid approach.

Software implementation of RTS monitoring is flexible,
but largely obtrusive and therefore significantly disturb
RTS timing characteristics.
Hardware based approach in implementation of RTS
monitoring is unobtrusive in some level but requires
specialized hardware. Whereas the target system must
support the possibility of its installation, the use of this
approach is inflexible and clumsy. It should be planned
during the design of the target system.
Hybrid monitoring enables both, unobtrusive nature of
the hardware approach and the flexibility of a software
approach. That's why the hybrid monitoring system is a
trade-off between pure hardware and pure software
monitoring.

Realisation of the RTS monitoring

Posing the demand that on-line monitoring do not
require significant CPU time and clumsy additional
specialized hardware, this paper presents one way of
implementation of hybrid on-line RTS monitoring. It is
intended for RTS based on an industrial PC and Linux
operating system which is widely accepted and
available open source system in RTS.
Implemented system monitors up to 32 processes i.e.
tasks and events that execute in parallel. The number of
monitored processes is relatively small, but it should be
said that HRTS in industrial applications do not have a
lot of processes. Increasing the additional hardware , the
number of monitored processes can be easily expanded.

Implemented system is based on additional hardware
module with 32 programmable timer-counters and
interrupt logic [3], [4]. Unlike [3] and [4], system
monitors more processes that can be executed
simultanously, and has some additional features. In
addition, simple software primitives for on-line
monitoring implementation are realized. They can be
activated from desired place in application program
code. For monitoring of the processes and tasks in RTS
without modification of application program code,
simple modification of the operating system task
sheduler and dispatcher is predicted. Modification
ensures that sheduler or dispatcher, with every change
of the process/task status, activates appropriate software
primitive for controlling timer and checking the time
constraints. Block diagram of the monitoring system is
shown in Figure 4.

CmdReg CmdReg

M
U

X

M
U

X

16
bC

O
U

N
TE

R

16
bC

O
U

N
TE

R

1M
H

z
D

iv
id

er

1 1
1/4 1/4
1/16 1/16
1/64 1/64

EN ENC
lk

C
lk

Load

Load

Load

OE

OE

OE

Data Data

Data

INTA
INTR

TC TC

. . .
IRQ31 IRQ0

INTERRUPT CONTROLLER

IN
TE

RF
A

C
E

TO
 T

H
E

PR
O

C
ES

SO
R

Fig. 4. Schematic description of an 32-channel Online

Monitor.

Timers-counters are used as devices for defining the
moments of events' time occurence as well as watchdog
i.e. monitoring timers for checking the correct timing
execution of the tasks. Command register, CmdReg
selects the time quantum of 1, 4, 16 or 64 µs which
gives the maximum time for task execution of 65.5, 262,
1048 and 4194 ms. Command register, through EN
input enables or disables counter operation. In the
monitoring module, there is also the decoder which,
depending on its control inputs, passes the write enable,
load and output enable signals to the desired command
register and counter. Writing to command register and
counter is done using the Data bus. Counter counts
backward, from the specified set value to zero. If task is
not complete within the given time interval, counter's
TC output sets to logic one. Using interrupt controller,
interrupt request for occured error processing is sent to
the microprocessor.
Software primitives control the module which has the
following functions:

 Setting the operating mode of timer-counters,
 Setting the time constraints,
 Enabling timer-counters,
 Disabling timer-counters,
 Reading value from timer-counters,
 Timer-counter interrupt processing,
 Comparison of the timer-counter value with the

timing constraints.

During the system verification phase monitoring system
provides informations about system timing
characteristics and creates the log file. During the
system operation it should detect deviations from
predicted timing behavior of the system which is the
consequence of a failure in RTS. Thereby, monitoring
system has two operating modes. First mode refers to
the system analysis. It performs with the purpose to
measure the time of execution of every task. Obtained
informations can be used for the future control of the
RTS.
In the second mode monitoring system has the function
of the built-in selftesting based on the watchdog
function. It checks upper and lower time limit at the
tasks and periodic quasi-periodic events level. Each task
activation initiates the procedure of starting timer-
counter. Monitoring timer-counter sets to the previously
defined maximum task execution time and starts its
countdown. If excess of the time interval happens,

monitoring module sets interrupt request. If the task is
complete before time excess, timer-counter stops its
countdown with the end of task execution. Monitoring
module reads its state and checks whether the task is
executed before the time (incorrectly performed). If the
task is executed in regular time intervals, RTS continues
to work, otherwise provided procedure for system
recovery from detected error starts. In this way,
predicted behavior of HRTS is ensured.
Checking the timing parameters of RT tasks on-line
monitoring checks correctness of their execution. Real-
time task τi can be characterized with the following
timing parameters (Figure 5): r – moment of occurence
of the request for task execution; B – maximum delay to
the start of task execution; C – task execution time
(needed CPU time); D – time limit for task execution; T
– period of occurence of periodic tasks.

Fig. 5. Timing parametes of RT task

Possible course of non pre-emptive task (τi) execution is
shown on Figure 6.

Fig. 6. Monitoring scenario of non pre-emptive task execution

From the moment – event rk when request for task τi
execution occured, allowed delay to starting the task
execution can be checked at first.
This is important for the tasks that do not initiate with
external interrupt event, but for the tasks which are „set“
in the queue for execution by some internal event. In the
case of exceeding the interval Bi monitoring timer-
counter generates a hardware interrupt request, and error
Error_B is detected. Another monitored time interval is
task execution time (CPU time). For task execution time
which is shorter than Ci (minimal required time for
correct task execution – detected when timer-counter is
in zero state), marker Error_C- is set. In case of
exceeding the task execution time Ci + ∆i (maximum
time for correct task execution) monitoring timer-
counter generates interrupt request to detect error
Error_C+. Such monitoring performs over each RT task.
Upon detection of any of these errors, it is the policy of
the planner and available time what will be taken.

Restarting of the same task or starting alternative task λi
execution which will overcome given situation can be
done. For each task, deadline Di for his execution
should also be monitored. Special counter –timer is
most suitable for this purpose. In the case of his
exceeding interrupt request is generated and hardware-
software security task τsi is started. This security task
should recover RTS or place it in a safe contidion.
Monitoring of pre-emptive tasks τi (Figure 7) differs
from the previous monitoring scenario. While his
execution is stopped because of higher priority task τj,
its monitoring timer-counter should be stopped (during
Cj).

Fig. 7. Monitoring scenario of pre-emptive task execution

Monitoring module is described in VHDL programming
language and implemented on FGPA programmable
device of Altera DE2 development board [5], [6].

CONCLUSION

Implementation of hybrid on-line monitoring
module was successfully achieved. Testing proved the
correct functioning of monitoring module. The next task
that imposes is the interface type to the microprocessor
(USB, PCI or some other). Interface type is very
important from the point of obtrusion to RTS. Interface
type which will use application resources as less as
possible should be chosen.

REFERENCE
[1] Jane W. S. Liu, Real-Time systems, Prentice Hall, 2000.
[2] N. Nissanke, Realtime Systems, Prentice Hall, 1997.
[3] M. Jevtic, V. Zerbe, S. Brankov, Multilevel validation of
on-line monitor for hard real time systems, Proc. 24th
International Conference on Microelectronics – MIEL 2004,
Vol. 2, pp. 755-758, Nis, Serbia, 16-19. may, 2004.
[4] S. Brankov, M. Jevtic, “Module for Run-Time Monitoring
of Real Time Processes Realized in VHDL”, Proceedings of
the XLVII ETRAN Conference, Vol.1, pp. 80-83, Herceg Novi
(Serbia and Montenegro), June 2003.
[5] Clive Maxfield,The Design Warrior’s Guide to FPGA,
Elsevier, New York, 2004.
[6] Altera DE2 user manual:
ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf

